Пятьдесят кубитов и еще один. Группа лукина в гарварде создала самый мощный в мире квантовый компьютер Михаил лукин квантовый компьютер

Выпускник Физтеха Михаил Лукин поставил эксперимент, изумивший мир

М. Лукин поступил в МФТИ в 1988 году на ФФКЭ, базовую подготовку проходил на кафедре твердотельной электроники под руководством академика Ю. В. Гуляева. Научной работой занимался под руководством В. И. Манько, А. Ф. Попкова, И. А. Игнатьева. После 4-го курса был командирован на 9 месяцев в Алабамский университет (США). По возвращении защитил дипломную работу и досрочно, в 1993 году, с отличием закончил МФТИ. По рекомендации профессора В. И. Манько был приглашен в Техасский университет к профессору М. Скалли, в 1998 году защитил диссертацию. За цикл научных работ в 1999 году удостоен медали Американского оптического общества.

Что наделал наш Лукин? ОН ОСТАНОВИЛ ЛУЧ СВЕТА!

(из эксклюзивного интервью собкора "КП" А. Кабанникова с российским ученым)

- ...Как вы оказались в Америке?

Я был приглашен в аспирантуру Техасского университета. А после защиты диссертации об использовании лазеров для контроля за средой получил специальную стипендию от Гарварда на исследования.

- Откуда взялась идея эксперимента с задержкой света?

Два года назад моему бывшему шефу по Техасскому университету Марлону Скалли исполнилось 60 лет. По этому поводу принято выпускать юбилейные сборники с работами учеников. Мы долго размышяли над темой. В ту пору было много разговоров о медленном свете - торможении его импульсов. Буквально за три дня до сдачи рукописи я и двое молодых коллег из Германии - Сюзанна Елин и Майк Фляйшхауэр - решили наконец, что будем писать о том, как остановить свет, и использовать это как способ сохранения информации.

Примерно год ушел на теоретические обоснования. Опыты начали в апреле и уже к осени имели первые результаты, которые полностью подтвердили теорию.

В прессе звучат самые фантастические характеристики вашей работы. Утверждают, например, что эксперимент опровергает теорию относительности. Говорят даже, что примерно так же можно остановить время...

Это домыслы любителей сенсаций. Что произошло в действительности? Представьте себе обычный луч, направленный на какой-нибудь предмет. Импульс света вступает во взаимодействие с атомами, они возбуждаются, излучают энергию. Потом она теряется - в виде тепла, свечения. Мы приготовили специальную среду из сверхохлажденных паров рубидия. А затем с помощью контрольного лазера сделали ее электромагнитно проводимой. На нее и был направлен импульс света. Когда он достиг среды, мы отключили контрольный лазер. Импульс замедлился до нуля, фотонов не стало. Но информация сохранилась внутри возбужденной среды. И если опять включить контрольный лазер, тот же импульс продолжит свое движение с прежней скоростью. Вот, собственно, и все.

Газета "Нью-Йорк таймс" рассказала о вашем эксперименте на первой полосе, вслед за этим пресса всего мира сообщила о нем как о научной сенсации с большим будущим...

Не уличайте меня в ложной скромности, но на самом деле значимость работы раздута. Сделан маленький шажок в маленькой области. Хотя реализация идеи в полном виде таит в себе интереснейший потенциал и может принести крупные результаты.

Действительно ли, как считают научные комментаторы, ваш опыт означает шаг к революции в компьютерных технологиях?

Это скорее дело инженеров, а мы занимаемся чистой наукой. Но опыт указывает на принципиально новые возможности хранения и обработки информации. Хотя путь к ним от лабораторного опыта огромный, он займет годы и даже десятилетия.

Так или иначе, этот эксперимент принес вам известность в научном мире; в свои 29 лет вы без пяти минут профессор Кембриджского университета. Есть ли в этом заслуга российской школы?

Без всяких сомнений! МФТИ был и остается первоклассным вузом. Ряд использованных нами методов базируется на идеях и разработках профессора Владлена Летохова из Института спектроскопии Российской академии наук. Когда два года назад двое американцев и француз получили Нобелевские премии за лазерное охлаждение, многие считали, что и Летохов должен был быть в числе лауреатов. Почти все знания о подходах к эксперименту я получил, сотрудничая с группой замечательных ученых Физического института имени Лебедева.

И не парадокс ли при этом, что удививший мир эксперимент по российским методикам поставлен российским ученым... в Америке?

Обедневшая отечественная наука сегодня держится лишь на ветеранах старой закалки... Я реально оцениваю ситуацию: поверьте, окажись у МФТИ средства на исследования, и они справились бы с той же самой задачей за какие-нибудь два года.

Вашингтон.

Physical Review Letters

January 29, 2001 - Volume 86, Issue 5, pp. 783-786

Full Text: PDF (163 kB)

Storage of Light in Atomic Vapor

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138

M. D. Lukin ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138

We report an experiment in which a light pulse is effectively decelerated and trapped in a vapor of Rb atoms, stored for a controlled period of time, and then released on demand. We accomplish this "storage of light" by dynamically reducing the group velocity of the light pulse to zero, so that the coherent excitation of the light is reversibly mapped into a Zeeman (spin) coherence of the Rb vapor. ©2001 The American Physical Society

URL:http://publish.aps.org/abstract/PRL/v86/p783

DOI: 10.1103/PhysRevLett.86.783

PACS: 42.50.Gy, 03.67.-a Additional Information

References

1. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, Phys. Rev. Lett. 84, 4232 (2000); L. M. Duan, J. I. Cirac, and P. Zoller (unpublished).

2. M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).

3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature (London) 397, 594 (1999); M. Kash et al., Phys. Rev. Lett. 82, 5229 (1999); D. Budker et al., ibid. 83, 1767 (1999).

4. See, e.g., S. E. Harris, Phys. Today 50, No. 7, 36 (1997).

5. Dissipative techniques for the partial transfer of quantum statistics from light to atoms are reported in A. Kuzmich, K. Mшlmer, and E. S. Polzik, Phys. Rev. Lett. 79, 4782 (1997); J. Hald, J. L. Sшrensen, C. Schori, and E. S. Polzik, Phys. Rev. Lett. 83, 1319 (1999).

6. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997).

7. M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 85, 4872 (2000).

8. M. D. Lukin et al., quant-ph/0011028.

9. L. Duan, J. I. Cirac, P. Zoller, and E. Polzik, quant-ph/0003111.

10. A. Kuzmich, L. Mandel, and N. Bigelow, Phys. Rev. Lett. 85, 1594 (2000).

11. O. Kocharovskaya, Yu. Rostovtsev, and M. O. Scully, Phys. Rev. Lett. 86, 628 (2001).

12. H. Schmidt and A. Imamolu, Opt. Lett. 21, 1936 (1996); ; S. E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998); S. E. Harris and L. V. Hau, ibid. 82, 4611 (1999); M. D. Lukin and A. Imamolu, ibid. 84, 1419 (2000).

13. For observation of Zeeman-coherence-based EIT in a dense medium, see V. A. Sautenkov et al., Phys. Rev. A 62, 023810 (2000).

14. In our present experiment up to ~50% of the input light excitation has been trapped. We anticipate that the stored fraction can be increased by either using a larger density-length product or with an optical cavity .

15. S. E. Harris, Phys. Rev. Lett. 70, 552 (1993); M. D. Lukin et al., Phys. Rev. Lett. 79, 2959 (1997).

16.C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature (London) (to be published).

В пятницу утром, 14 июля, на Международной конференции по квантовым технологиям Михаил Лукин - сооснователь Российского квантового центра и профессор в Гарвардском университете - рассказал о создании его научной группой полностью программируемого 51-кубитного квантового вычислителя. На первый взгляд, такой результат можно назвать внезапным прорывом в этой области - такие гиганты, как Google и IBM, только подбираются к рубежу 50 кубитов в квантовом компьютере. Буквально вчера на сервере препринтов arXiv.org появилось подробное описание эксперимента. Редакция N + 1 решила разобраться в том, что же все-таки произошло и чего ждать от нового квантового компьютера.

Коротко о квантовых компьютерах - универсальных и неуниверсальных

На что похож 51-кубитный компьютер?

Разберемся с системой, созданной физиками в новой работе. Роль кубитов в ней играют холодные атомы рубидия, захваченные в оптическую ловушку. Сама ловушка представляет собой массив из 101 оптического пинцета (сфокусированного лазерного луча). Атом удерживается пинцетом в равновесном положении за счет градиента электрического поля - он притягивается к области с максимальной напряженностью электрического поля, которая находится в точке фокуса пинцета. Так как все пинцеты выстроены в ряд, все атомы-кубиты компьютера также выстроен в цепочку.

«Ноль» для каждого из атомов рубидия - его основное, невозбужденное состояние. «Единица» - специально подготовленное ридберговское состояние. Это такое возбужденное состояние, в котором внешний электрон рубидия оказывается очень далеко от ядра (на 50-й, 100-й, 1000-й орбитали), но по-прежнему остается с ним связан. Из-за большого радиуса ридберговские атомы начинают взаимодействовать (отталкиваться) на гораздо больших расстояниях, чем обычные. Это отталкивание и позволяет превратить ряд из 51 атома рубидия в цепочку сильно взаимодействующих частиц.

Для управления состояниями кубитов используется отдельная система лазеров, способная возбуждать их в ридберговское состояние. Главная и важнейшая особенность нового вычислителя - возможность напрямую адресоваться к каждому из 51 кубита. Существуют и более сложные ансамбли атомов, в которых наблюдаются запутанные квантовые состояния (недавно мы о 16 миллионах атомов, запутанных взаимодействием с одним фотоном), а квантовое моделирование выполняли и на более чем сотне холодных атомов. Но во всех этих случаях у ученых не было возможности точно контролировать систему. Именно поэтому новая система называется полностью программируемым квантовым компьютером.

Каждое вычисление на квантовом компьютере - в некотором смысле моделирование реальной квантовой системы. Основная часть новой работы посвящена моделированию хорошо известной квантовой системы - модели Изинга. Она описывает цепочку (в данном случае) частиц с ненулевыми спинами (магнитными моментами), взаимодействующих со своими соседями. Модель Изинга часто привлекают для описания магнетизма и магнитных переходов в твердых телах.

Эксперимент был построен следующим образом. Сначала частицы охлаждали и захватывали в оптические пинцеты. Это вероятностный процесс, поэтому поначалу массив частиц был хаотичным. Затем с помощью последовательности измерений и корректировок создавался бездефектный массив из более чем 50 холодных атомов в основном невозбужденном состоянии. На следующем этапе оптические пинцеты отключали и одновременно с этим включали систему, возбуждавшую атомы в ридберговское состояние. Некоторое время система эволюционировала под действием ван-дер-ваальсовых сил - атомы занимали наиболее «удобные» для них позиции, после чего пинцеты снова включали и изучали результат эволюции.

В зависимости от того, как близко располагались холодные атомы до возбуждающего импульса, физики наблюдали разные результаты эволюции. Это связано с тем, что ридберговские атомы способны подавлять возбуждение соседей до ридберговских состояний (из-за сильного отталкивания). Ученые наблюдали системы, в которых атомы после эволюции оказывались упорядочены так, что между каждой парой соседних ридберговских атомов был строго один, строго два или строго три обычных.

Интересно, что образование очень упорядоченных структур после свободной эволюции происходило с очень большой вероятностью - даже в случае массива из 51 холодного атома.

Чтобы посмотреть, как происходит процесс эволюции, ученые включали пинцеты и «фотографировали» систему в разные моменты времени. Оказалось, что в некоторых случаях эволюция к состоянию равновесия происходила очень медленно: система долгое время колебалась между несколькими состояниями. Этот результат можно подтвердить грубым классическим моделированием, вовлекая в анализ взаимодействия между соседними и следующими за соседними атомами.

Полезно ли это?

Это один из тех случаев, когда квантовое моделирование предсказывает реальный новый эффект. Стоит заметить, что точно смоделировать систему из 51 холодного атома с помощью классического компьютера невозможно. Чтобы только описать все возможные ее состояния потребуется 2 51 бита оперативной памяти (около петабайта). Подтвердить этот эффект удалось лишь грубым моделированием на классическом компьютере.

Интересно, что ровно обратная ситуация возникает при квантово-химических расчетах - классические компьютеры дают лишь приблизительную оценку свойств для сложных систем, затрачивая на это огромные вычислительные ресурсы. В то же время прямой анализ этих, безусловно, квантовых систем дает точный результат.

А для чего еще он пригодится?

В конце препринта авторы традиционно приводят список областей, в которых может быть полезна новая разработка. Можно перечислить некоторые из них: создание суперпозиций, состоящих из большого количества частиц, исследование топологических состояний в спиновых системах. Физики отдельно отмечают, что алгоритм хорошо подходит для решения задач оптимизации систем, размеры которых заведомо превышают предел досягаемости обычных компьютеров. Эти задачи включают в себя моделирование химических реакций и обучение .

Созданная Михаилом Лукиным и его коллегами система работает сейчас как квантовый симулятор - она моделирует системы, подобные самой себе. Однако стоит заметить, что на отдельных парах ридберговских атомов физикам уже удавалось создавать логические CNOT -вентили, используемые для создания запутанности. Поэтому можно говорить о том, что в новой системе можно реализовать некоторые простейшие алгоритмы (к примеру, алгоритм Дойча, или алгоритм Шора для очень маленьких чисел). Однако на данном этапе эти алгоритмы не будут полезными.

Михаил Лукин (слева) и Джон Мартинис (справа) - глава группы, разрабатывающей 49-кубитный квантовый компьютер в Google

Российский квантовый центр

В некотором смысле новое устройство уже сейчас способно решать задачи, недоступные для классических компьютеров - его невозможно точно смоделировать обычными компьютерами. Но говорить о полезном квантовом превосходстве, которое уже сейчас пригодится в прикладных задачах, еще рано. Многие ученые отмечают, что гонка за квантовым превосходством сейчас не несет в себе ничего полезного с точки зрения прикладных вычислительных задач.

Стоит заметить, что эксперименты с атомами в оптических решетках уже несколько лет назад превзошли предел досягаемости точного моделирования классическими компьютерами. В них используются десятки связанных между собой частиц. Например, с их помощью квантовые кооперативные явления, родственные сверхтекучести и сверхпроводимости. Является ли это квантовым превосходством?

Владимир Королёв

Когда речь заходит о выдающихся российских ученых, многие вспоминают героев прошлых лет - Менделеева, Павлова или Ландау, забывая, что и среди наших современников есть множество незаурядных исследователей. Ко Дню российской науки «Чердак» собрал имена тех, кто сделал значимые открытия уже в XXI веке.

Физика

Андрей Гейм. Фото: ИТАР-ТАСС/ Станислав Красильников

В новом тысячелетии Нобелевская премия по физике доставалась русскоязычным ученым трижды, правда лишь в 2010 году - за открытие, совершенное в XXI веке. Выпускники МФТИ Андрей Гейм и Константин Новоселов в лаборатории Манчестерского университета впервые смогли получить стабильный двумерный кристалл углерода - графен. Он представляет собой очень тонкую - толщиной в один атом - углеродную пленку, которая благодаря своей структуре обладает множеством интересных свойств: это и замечательная проводимость, и прозрачность, и гибкость, и очень высокая прочность. Для графена все время находят новые и новые области применения, например в микроэлектронике: из него создают гибкие дисплеи, электроды и солнечные батареи.

Михаил Лукин. Фото: ИТАР-ТАСС/ Денис Вышинский

Еще один выпускник МФТИ, а ныне профессор физики Гарвардского университета Михаил Лукин , сделал, казалось бы, невозможное: он остановил свет. Для этого ученый использовал сверхохлажденные пары рубидия и два лазера: контрольный делал среду проводимой для света, а второй служил источником короткого светового импульса. При отключении контрольного лазера частицы светового импульса переставали выходить из среды, как бы останавливаясь в ней. Этот эксперимент стал настоящим прорывом на пути создания квантовых компьютеров - машин совершенно нового типа, которые могут параллельно выполнять колоссальное количество операций. Ученый продолжил исследования в этой области, и в 2012 году его группа в Гарварде создала самый долгоживущий на тот момент кубит, наименьший элемент для хранения информации в квантовом компьютере. А в 2013-м Лукин впервые получил фотонную материю - подобие вещества, только состоящее не из атомов, а из частиц света, фотонов. Ее также планируют использовать для квантовых вычислений.

Юрий Оганесян (в центре) с Георгием Флеровым и Константином Петржаком. Фото из электронного архива ОИЯИ

Российские ученые в XXI веке значительно расширили таблицу Менделеева. Например, в январе 2016 года в нее добавились элементы с номерами 113, 115, 117 и 118, три из которых были впервые получены в Объединенном институте ядерных исследований (ОИЯИ) в Дубне под руководством академика РАН Юрия Оганесяна . Ему также принадлежит честь открытия ряда других сверхтяжелых элементов и реакций их синтеза: в природе элементы тяжелее урана не существуют - слишком нестабильны, так что они создаются искусственно в ускорителях. Кроме того, Оганесян экспериментально подтвердил, что для сверхтяжелых элементов есть так называемый «остров стабильности». Все эти элементы очень быстро распадаются, но сперва теоретически, а затем и экспериментально было показано, что среди них должны быть такие, время жизни которых значительно превышает время жизни соседей по таблице.

Химия

Артем Оганов. Фото из личного архива

Химик Артем Оганов , руководитель лабораторий в США, Китае и России, а теперь еще и профессор Сколковского института науки и технологий, создал алгоритм, который позволяет с помощью компьютера искать вещества с заранее заданными свойствами, даже невозможные с точки зрения классической химии. Разработанный Огановым метод лег в основу программы USPEX (что читается как русское слово «успех»), которая широко применяется по всему миру («Чердак» подробно ). С ее помощью были открыты новые магниты, и вещества, способные существовать в экстремальных условиях, например под высоким давлением. Предполагается, что такие условия вполне могут быть на других планетах, а значит, там и предсказанные Огановым вещества.

Валерий Фокин. Биофармацевтический кластер «Северный»

Однако необходимо не только смоделировать вещества с заранее заданными свойствами, но и создать их на практике. Для этого в 1997 году в химии была введена новая парадигма, так называемая клик-химия . Слово «клик» имитирует звук защелки, ведь новый термин был введен для реакций, которые должны при любых условиях соединять маленькие составные части в нужную молекулу. Сперва ученые с недоверием отнеслись к существованию чудо-реакции, однако в 2002 году Валерий Фокин , выпускник Нижегородского государственного университета имени Лобачевского, сейчас работающий в Институте Скриппс в Калифорнии, открыл такую «молекулярную защелку»: она состоит из азида и алкина и работает в присутствии меди в воде с аскорбиновой кислотой. С помощью этой нехитрой реакции можно соединять друг с другом совершенно различные соединения: белки, красители, неорганические молекулы. Такой «клик»-синтез веществ с заранее известными свойствами прежде всего необходим при создании новых лекарств.

Биология

Евгений Кунин. Фото из личного архива ученого

Однако для лечения болезни иногда необходимо не просто нейтрализовать вирус или бактерию, но и подправить собственные гены. Нет, это не сюжет для фантастического фильма: ученые уже разработали несколько систем «молекулярных ножниц», способных редактировать геном (подробнее об удивительной технологии в статье «Чердака»). Наиболее перспективной среди них считается система CRISPR/Cas9, в основу которой лег механизм защиты от вирусов, существующий у бактерий и архей. Один из ключевых исследователей этой системы - наш бывший соотечественник Евгений Кунин , уже много лет работающий в Национальном центре биотехнологической информации США. Помимо CRISPR-систем ученый интересуется многими вопросами генетики, эволюционной и вычислительной биологии, так что недаром его индекс Хирша (индекс цитируемости статей ученого, отражающий, насколько востребованы его исследования) перевалил за 130 - это абсолютный рекорд среди всех русскоязычных ученых.

Вячеслав Эпштейн. Фото Северо-западного университета

Впрочем, опасность сегодня предоставляют не только поломки генома, но и самые обычные микробы. Дело в том, что за последние 30 лет не было создано ни одного нового типа антибиотиков, а к старым бактерии постепенно становятся невосприимчивыми. На счастье человечества, в январе 2015 года группа ученых из Северо-восточного университета США объявила о создании абсолютно нового противомикробного средства. Для этого ученые обратились к изучению почвенных бактерий, вырастить которые в условиях лаборатории прежде считалось невозможным. Чтобы обойти эту преграду, сотрудник Северо-восточного университета, выпускник МГУ Вячеслав Эпштейн вместе с коллегой разработал специальный чип для выращивания непокорных бактерий прямо на дне океана – таким хитрым способом ученый обошел проблему повышенной «капризности» бактерий, которые никак не хотели расти в чашке Петри. Эта методика и легла в основу большого исследования, результатом которого стал антибиотик теиксобактин, который может справиться и с туберкулезом, и с золотистым стафилококком.

Математика

Григорий Перельман. Фото: George M. Bergman - Mathematisches Institut Oberwolfach (MFO)

Даже весьма далекие от науки люди наверняка слышали о математике из Санкт-Петербурга Григории Перельмане . В 2002-2003 годах он опубликовал три статьи, доказывающие гипотезу Пуанкаре. Эта гипотеза относится к разделу математики, который называется топологией и объясняет наиболее общие свойства пространства. В 2006 году доказательство было принято математическим сообществом, и гипотеза Пуанкаре, таким образом, стала первой решенной среди так называемых семи задач тысячелетия . К ним относятся классические математические проблемы, доказательства которых не были найдены на протяжении многих лет. За свое доказательство Перельман был удостоен Филдсовской премии, которую часто называют Нобелевкой для математиков, а также премии, установленной Математическим институтом Клэя за решение задач тысячелетия. От всех наград ученый отказался, чем и привлек к себе внимание далекой от математики общественности.

Станислав Смирнов. Фото: ИТАР-ТАСС/ Юрий Белинский

Работающий в Женевском университете Станислав Смирнов в 2010 году тоже стал обладателем Филдсовской премии. Самую престижную в математическом мире награду ему принесло доказательство конформной инвариантности двумерной перколяции и модели Изинга в статистической физике - эта вещь с непроизносимым названием используется теоретиками для описания намагниченности материала и применяется в разработке квантовых компьютеров.

Андрей Окуньков. Фото: «Радио Свобода»

Перельман и Смирнов - представители Ленинградской математической школы, выпускники небезызвестной 239-й школы и математико-механического факультета СПбГУ. Но были среди номинантов математической Нобелевки и москвичи, например много лет проработавший в США профессор Колумбийского университета, выпускник МГУ Андрей Окуньков . Он получил медаль Филдса в 2006 году, одновременно с Перельманом, за достижения, соединяющие теорию вероятностей, теорию представлений и алгебраическую геометрию. На практике работы Окунькова разных лет нашли применение как в статистической физике для описания поверхностей кристаллов, так и в теории струн - области физики, пытающейся объединить принципы квантовой механики и теории относительности.

История

Петр Турчин. Фото: Технологический университет Стивенс

Новую теорию на стыке математики и гуманитарных наук предложил Петр Турчин . Удивительно, что при этом сам Турчин не математик и не историк: он биолог, учившийся в МГУ, ныне работает в университете Коннектикута и занимается исследованием популяций. Процессы популяционной биологии развиваются на протяжении долгого времени, и для их описания и анализа зачастую необходимо построение математических моделей. Но моделирование можно использовать и для лучшего понимания социальных и исторических явлений в человеческом обществе. Именно это и сделал в 2003 году Турчин, назвав новый подход клиодинамикой (от имени музы истории Клио). С помощью этого метода самим Турчиным были установлены «вековые» демографические циклы.

Лингвистика

Андрей Зализняк. Фото: Mitrius/wikimedia

Ежегодно в Новгороде, а также в некоторых других древних русских городах, таких как Москва, Псков, Рязань и даже Вологда, находят все новые и новые берестяные грамоты, возраст которых датируется XI-XV веком. В них можно найти личную и официальную переписку, детские упражнения, рисунки, шутки, а то и вовсе любовные послания - «Чердак» о самых смешных древнерусских надписях. Живой язык грамот помогает исследователям разобраться в новгородском диалекте, а также в жизни простого народа и истории Руси. Самый известный исследователь берестяных грамот - это, безусловно, академик РАН Андрей Зализняк : недаром на его ежегодные лекции, посвященные вновь найденным грамотам и расшифровке старых, набивается полный зал народу.

Климатология

Василий Титов. Фото с сайта noaa.gov

Утром 26 декабря 2004-го, в день трагического цунами в Индонезии, унесшего, по разным оценкам, жизни 200-300 тысяч человек, выпускник НГУ, работающий в Центре по исследованию цунами при Национальной океанической и атмосферной администрации в Сиэтле (США), Василий Титов проснулся знаменитым. И это не просто фигура речи: узнав о сильнейшем землетрясении, произошедшем в Индийском океане, ученый, прежде чем лечь спать, решил запустить на компьютере программу по прогнозированию волны цунами и выложил ее результаты в сеть. Его прогноз оказался очень точным, но, к сожалению, был сделан слишком поздно и потому не смог предотвратить человеческих жертв. Теперь же программа по прогнозированию цунами MOST , разработанная Титовым, используется во многих странах мира.

Астрономия

Константин Батыгин. Фото с сайта caltech.edu

В январе 2016 года мир потрясла еще одна новость: в нашей родной Солнечной системе . Одним из авторов открытия оказался родившийся в России Константин Батыгин из Калифорнийского университета. Исследовав движение шести космических тел, находящихся за орбитой Нептуна - последней из признанных на данный момент планет, ученые с помощью вычислений показали, что на расстоянии, в семь раз превышающем расстояние от Нептуна до Солнца, должна находится еще одна, обращающаяся вокруг Солнца планета. Размер ее, по оценкам ученых, в 10 раз превышает диаметр Земли. Однако для того, чтобы окончательно убедиться в существовании далекого гиганта, все еще необходимо увидеть его с помощью телескопа.


Российские и американские ученые из Гарвардского университета, работающие в группе Михаила Лукина, создали квантовый компьютер из 51 кубита, самый мощный на сегодня в мире. Об этом сооснователь Российского квантового центра (РКЦ) профессор Лукин сообщил в своем докладе на Международной конференции по квантовым технологиям (ICQT-2017), которая прошла в июле в Москве под эгидой РКЦ.


В отличие от классических цифровых компьютеров, у которых память построена на принципе двоичного кода (0 или 1, «да» или «нет»), квантовые компьютеры строят на основе кубитов - квантовых битов. Они тоже допускают два состояния (0 и 1), но благодаря своим квантовым свойствам кубит дополнительно допускает еще и состояния суперпозиции, то есть, условно говоря, еще массу промежуточных состояний между двумя основными состояниями, описываемых комплексными (мнимыми) числами. Понятно, что при таких условиях мощность и быстродействие квантового компьютера на несколько порядков выше.

Саму идею использовать квантовые вычисления для решения чисто математических задач предложил еще в 1980 году Юрий Манин из Института имени Стеклова, а год спустя принцип построения квантового компьютера сформулировал Ричард Фейнман. Но прошли десятилетия, прежде чем появились технологии, способные реализовать их идеи на практике.

Главной проблемой было создать устойчиво работающие кубиты. Группа Лукина использовала для них не сверхпроводники, а так называемые холодные атомы, которые удерживаются внутри лазерных ловушек при сверхнизких температурах. Это позволило физикам создать самый большой в мире квантовый вычислитель из 51 кубита и обойти своих коллег группы Кристофера Монро из университета штата Мэриленд (5-кубитныое устройство) и группы Джона Мартиниса из компании Google (22-кубитное устройство).

Образно говоря, при строительстве кубитного компьютера физики вернулись от цифровых к аналоговым устройствам первой половины прошлого века. Теперь их задача - перейти к «цифре» на новом, квантовом уровне. Используя набор кубитов на основе «холодных атомов», команда Лукина уже смогла решить несколько частных физических задач, чрезвычайно сложных для моделирования при помощи классических компьютеров.

В ближайшее время ученые намерены продолжить эксперименты с квантовым компьютером. Помимо решения чисто научных задач из области квантовой механики профессор Лукин не исключает, что его команда попытается реализовать на нем знаменитый квантовый алгоритм Шора, перед которым бессильны существующие ныне системы шифрования. Но и других практических областей, где новое поколение компьютеров могло бы произвести революцию, множество. Например, гидрометеорология, где сейчас явно не хватает мощности существующих вычислительных устройств для повышения точности прогнозов погоды.

Квантовые компьютеры делают первые шаги, но не за горами время, когда они станут такой же обыденностью, как нынешние ПК.

Понравилась статья? Поделитесь с друзьями!